An Object-Oriented Framework for Farm System Simulation

R A Sheriock and K P Bright
Dairying Research Corporation
Private Bag 3123
Hamilton, New Zealand

Abstract We describe the structure and implementation of a whole-farm system simulation framework.
Developed for building computer models of pastoral farms, the framework design is aiso applicable to a wider
range of farm (and other) systems. The prime objectives are: (i) - to provide the necessary flexibility in the
specification of farm components and management scenarios to represent real farm practices, and (ii) - to facilitate
utilisation of third-party sub-system component models, typically written in a variety of languages and software
environments, as extensively as possible. The basic representation of the farm is a state-variable {sv) description
of a lumped-element continuous-time dynamical system. As a censequence of the high degree of
compartmentalisation of funetionality in the real-world objects, most of the sv derivatives depend on only a
relatively small number of sv's of other components — thereby making an object-oriented represeatation both
feasible and appropriate. The framework is implemented in the Smalltalk language which facilitates muiti-
contributer development through its relative transparency and self-documentation capabilities. Consistent
messaging between sub-system component models, possibly running on different networked machines, and the
framework is achieved by linking them through proxy Smalltalk objects. The frammework imposes a separation
of (storable) macro-state objects and component-model-specific updaters. These are combined into the dynamic-
component objecis which constitute the overall farm model at the time it is instantiated, thereby ailowing users
(typically agricultural scientists and component-model developers) to make menu selections from alternative

sub-component models for state updating.

1. INTRODUCTION underlying Farm System Simulation Framework

The structere and implementation of a flexible (FSSF) now described has a wider applicabiliiy,

whale-farm systems is described. Target users are
agricultural scientists interested in using computer
models to help identify, and then focus research on,
system aspects and critical areas of the farm system
which are poorly understood. As these are addressed
the models should also be capable of evolving to
become an effective repository of the current level
of understanding of farm systems in a practically
useable form.

2. METHODOLOGY

The FSSF is implemented in VisualWorks 3.0
[ObjectShare Iac, 1998]. This is a general purpose
application framework and integrated deveiopment
environment based on Smalltalk — a language which
strictly enforces object-oriented (00) design
principles, e.g. Lewis [1995]. The reasons for this
choice have been discussed in some detail by
Shertock et al. [1997], but we emphasise the point
that the OO analysis and design was developed to
increase reliability and facilitate maintenance of large
complex software systems, Meyer [1997} and Booch
[1994}. This is largely achieved by encapsulating
private state and functionality inside ‘abjects’ which
can only communicate through a clearly-defined

This rather ambitious goal requires the ability to
realistically represent the real-world biophysical
entities by compenent medels, to provide flexible
representation of their changing configurations and
associations, and to provide representations of their
interactions. Maximising the ability to utilise
camponent models (both existing and future)

.................. framework-for- developing -simulation -models. of.........however, and that aspect is the focus of this paper.

developed by third-parties, and maintaining a level
of transparency and documentation that makes multi-
contributer development a realistic expectation, is
essential.

The work has its origins in a simulation model of the

New Zealand style pasture-based dairy farm system,
Shertock ef af. [1997], and that model is currently
undergoing validation against farmilet field trials. The

public messaging interface.

The OO0 approach is particularly appropriate in
modelling situations such as the farm systems of
interest here in which the real-world entities are
inherently quite “object-like’. For example, an animal

‘has a very complex internaf state, potentially needing

thousands of variables for an adequate
characterisation, but most of these are invisibie to

~783 -

the outside world and the cow’s interaction with its
envirenment can be well represented by a small
subset of them. Another significant advantage of an
00 structure 18 that external programme maodules,
typically implementing third-party component
models, are inherently objeci-like and can be
‘wrapped’ so that they appear as native objects in
the framework. Neil er al., [1999] describe this in
detail in the context of the FSSF, and Neil [1999]
gives further discussion of technigues used to
distribute the computational burden over multiple
{networked) muachines —an important practical issue.

There are several computer languages which sup-
part the OO paradigm (with varying degrees of fi-
delity), and choice of such is always a contentious
issue. We have found no reason to change from our
original selection of Smalltalk for the framework —~
if anything its appropriateness has been confirmed.
The combination of Smalltalk’s large and stable class
tibrary, highty automated memory management with
garbage collection, immediate expression evaluation
and incremental compilation, gives an unmatched
development environment. Further, the natural-lan-
guage-tike syntax encourages writing largely self-
documenting code ~ an important consideration for
a project with the potential for an extended develop-
mental lifetime and multiple contributers.

Although VisualWorks runs under all major operat-
ing systems (including Linux and several Unix plat-
torms) the current FSSF s effectively constrained to
Microsoft Windows NT 4.0 because of its extensive
use of the Microsoft COM and DCOM protocals

~{Rogerson, T99TT for Hinking woexterijal compongnts

The Unified Modelling Language (UML) - ¢.2. see
Fowter and Scott { 1997], as realised in the Rose prod-
uct [Rational Software, 1998], has been used exten-
sively for documentation and analysis, and increas-
ingly as a design ool

3. FRAMEWORK ARCHITECTURE
31 Overview

Figure 1 illustrates the major compositional
relationships and associations of a typical farm model
implemented in the FSSE The physical composition
of the farm is defined by the components of Land
and Animals, which are essentially container classes
for multiple instances of animal and paddock objects
etc. (This ability to represent individual entities
having individual characteristics is essential for
modelling ‘small” farmlet studies common in the
research environment). The Policy class defines
management operations while Climate provides the

driving inputs (principally for pasture growth) from

‘actual meteorofogical data, These four major entities
(Land, Animals, Policy and Climate) are built from
binary file specitications, selected through the upper

— 784~

pane of the user interface shown in Figure 2. This
procedure allows ‘new’ farm scenarios to be readily
defined from different combinations of existing
entities, and then saved for future recall in an overall
‘SimSpec’ file,

The lower pane of the user interface provides drop-
down lists for the selection of specific component
sisb-models to be used for updating the states of the
dynamic objects in the system, and also for specifying
the start date and the time span of the simulation, At
present just four subctasses of DynamicComponent
have been impiemented: Cow, Herbage, Soil and
Feedstore - of which sub-modei choices are availabie
only for Cow and PastureGrass (a subclass Herbage,
which will alse have Crop subclasses). However
there is no structural limitation in the FSSF o
extending both the number of component types and
sub-models as the requirement and/or the availability
of such increnses. e.g. the current Cow is really just
ametabolism component — most Hikely Cow will cease
to be a DynamicComponent and become a container
of a CowMetabolism, CowUdder and possibly other
‘cow-refated’” DynamicComponents (analagous to
Paddock holding Herbage and Soil
DrynamicComponents).

The FarmManager has the principal responsibility
for providing methods which implement “the
mechanics’ of altering farm configurations — moving
cows between mobs as they change status (e.g. from
dry to lactating), assigning mobs to paddocks for
grazing, allocaling supplementary feed, ete. The

scheduling and details of such operations is defined

mimics actual recorded operations on a specific real
farm (usefiz! for validation exercises), or a RulePolicy
in which.algorithmic implementations.of.a-human
farm manager’s decision rules generate the equivalent
information. In both cases this information is
contained in a sequence of StepConfig objects. each
definipg a particular configuration of the farm
{composition of groupings, associations of animals
with grazing paddocks etc) and the time interval over
which this remains unchanged (typicatly 24 hours or
less, depending on how faithfully real farm
procedures are being represented). The simuiation
can then be advanced cver the step by attaching
appropriate state-update models to each
DynamicComponent and executing an update
{usuatly a numerical integration) over the StepConfig
interval.

3.2 State Representation
The siate of a dynamical system summarises its whole
past history in the sense that future behaviour is

“completely defined by knowledge of the current state.

and subsequent inputs, e.g. Padulo and Arhib {19741,
This concept is central to the FSSF in which the farm

DateAndTimekeepar

FarmManager

v 5

© DabyetData | StepGonfig
. «<Abstract Class>> ; o
. ¢ Feedstore
DynamicCompenent e
[]
eAbstract Class>:> F dl\:eSiale HerbageStat
racroState eedstor eroagesiate
f%: A l"
H e Y
i StateUpdateSequencer FeeadstoreSubModel HerbageSubModei ¢ SoiSubModel
; i
7

f| /

Figure 1. A UML class diagram of the top-level structure of a pastoral dairy farm implemented in the FSSE
Relationships between the shaded elements are expanded in detall in Figure 3. Note that all classes on the same
line as DynamicComponent have it as their super-class, and similarly for MacroSiate — most of the generalisation

linkages have been omitted for clarity.

INotation: The diamond symbol denotes composition. e.g. a CowMob holds (rather than just references) a
number of Cow ohjects. The default navigabiliy of association links is bi-directional, arrow-heads impose
restriction (e.g. SubModel objects can send messages to their associated MacroState object, but the reverse 13
not true). Uniless otherwise indicated, association links have a default multiplicity of 1. i.e. the association is

“HetWERT ST ONE Tisiance of each of tie Tinked classes The symibol* denotes “more thanone™ .

is treated as a lumped-element dynamical system (i.e.
Jocal spatial depeadencies are ignored) by providing
a uniform method of representing and updating the
states of the bio-physical components which
comprise it. Of course, any practical representation
of the state of such complex componenis as cows
and pastures can only be a coarse approximation at
best. As always, the challenge o the modeller is to
find a ‘good enovgh’ approximation to adequately
represent the range of behaviours of interest for the
specific modelling goal.

In the FSSF each DynamicComponent holds a
MacroState object comprised of three vectors:
IdentityVec, SiatusVec and DynamicStateVec
(abbrev. DsVec) illustrated in the upper section of
Figure 3 for the specific case of a Cow object. The
elements of DsVec are the dynamic state variables
(sv's). IdentityVec holds constants (e.g. name,
breedCode and birthDate for a cow) while StatusVec

is typically comprised of flag variables (e.g.

calvingDate, isLacting). A MacroState must contain
sufficient informatiorn to allow its

— 785 -

DynamicComponent owner to respond to any
requests that other objects in the system may need to
make to implement their own functionality. The
comporent vectors of MacroState are instances of
Dictionary (a standard Smalltalk class} so that their
elements are indexed by symbolic name keys (to aid
readability}.

As the FSSF is further developed it is likely to require
additions to, and/or re-definitions of, the elements of
these vectors. itis important that such changes have
minimal side-effects in the rest of the system software,
and this is ensured by the MacroState being directly
visible only to its DynamicComponent owner. Any
requests for cow state information (for example) must
therefore be handled by methods of the Cow class
(or subclass), and if the structure of the CowState
vector changes only those Cow method bodies need
modifying. Thus although it may be expanded to
cater for new state variables, the existing public

“messaging interface is preserved — a benefit of the =

encapsulation/information-hiding property of OO
design.

Figure 2. User interface for specification of
simulation conditions.

33 State Update and Sub-model Selection

To advance a simulation over some time-step it is
necessary to update the state vector of each
DynamicComponent to a new value based on the
existing value and the inputs over that step. In this
context inputs may be true external inputs fo the
whole system. such as climate variables, andfor
values derived from the states of other
DynamicComponents in the system. The basic
description of the time-evolution of dynamic systems
is through differential equations (DE’s), and in our
lumped-element approximation these can always be
couched in the form of a set of ordinary DE's
involving only time derivatives. i.e. expressing rates
of change of sv's in terms of other sv’s and external

ir_;p_u_ts__. _Altheugh notusually amenable to analytical

~ solution, these can (with some caveats) be readily
solved by numerical Integration procedures - e.g,
Press et al. [1992].

The specification of a particular set of sv's to

represent a DynamicComponent, along with the
associated update equations, constitutes ‘a model’
of that object — referred to as a ‘component sub-
model’ in the context of the FSSE In this work a
prime sim has been to utilise existing component sub-
models as fully as possible as they freguently
incorporate many years of effort in development and
vatidation. The requirement for a flexibie assignment
of sub-models has a more basic reason too — as the
farm simulation progresses quite different updaters
will be required for some DynamicComponents. e.g.
pasture may be just growing without animals on it,
being grazed, or being machine-cut. There is
considerable advantage in being able to utilise
specific sub-models to represent each of those
different situations {instead of hoping to find them
all handled inside some monolithic ‘universal pasture
nedel’).

Figure | illustrates the relationship between
DynamicComponents, their MacroState and their

updater SubModel in the overall FSSF structure.
Figure 3 expands this in some detail, illustrating two
different updater attachment schemes. Al updaters
are sub-classed from DsVecUpdater via one of three
intermediate abstractions: DsVecExternatUpdater
which implements the common functionality of all
interfaces to external sub-models, DsVeclntegrator
which provides numerical integration schemes (Euler
and Runge-Kutta) for native Smalltalk sub-models,
and DsVecSingleStepUpdater for cases (like machine
cuiting of pasture) where a simple ‘algebraic update’
rather than integration is appropriate. All updaters
are dependents of StateUpdateSequencer and so
receive 4 series of sequencing messages conirolling
copying between MacroState and the local updater
state, sequencing numerical infegration steps, ete,

The technical issues surrounding incorperation of
external (particularly third party) component sub-
modets into the FSSF has been described in detail by
Neil er al. [1999] and Neil {1999}; the essence of the
solution being the impiementation of intermediate
layer(s) of software which allow data and commands
to be passed between the DsVecExternalUpdater
subctass in the FSSF and the environment/application
ruaning the component sub-model, Only the
Smalltalk object DsVecExternaiUpdater is visible
from within the FSSF, so communication with the
external components is by the standard Smalltalk
message protocol of the framework.

The other main difficaity in incorporating an external
sub-model is the relationship between its own sv’s
and those of the associated DynamicComponent in

~the FSSE. There s no sitipte solution to this, and in

some cases the mismatch will be considerable. For
example, Baldwin’s [1995] very detailed Molly cow
autrition model (which we have successfully utilised)
contains over a thousand sv’s while the current
CowSiate IDsVec contains only ten. However, all ten
do have fairly direct equivaients in Molly, so copying
these back to CowState (with simple scalings ete.
where appropriate) is straightforward. What is less
satisfactory is the foss of information on instantiation
of a Molly from a specified CowState. Most of
Moily’s sv's will have to retain their internal default
initialisation, and some settling transients must be
expected.

Mote that the different updater models are always
associated with their own concrete subclass of
DynamicComponent. This gives them the ability to
over-ride defauit access methods, and hence ‘insulate’
the rest of the system from variations in usage of
different subsets of sv’s. As an iflustration,
PastureGrassSiate DsVec has seven sv's describing
the per Ha dry mass of each of seven physiologically

“(and nutritionaily) distinct components used by the

most complex of our currently available ryegrass
growth models. We also have access to a simpler

- 786 -

| <<Abstract Classss <<Abstract Class>>
i DynamicComponant Cow
A
. O ,....N...A”“A.—i,,,,,,,_; .- .
i§;a"/ <<Abstract Clagss> ; ~ e
- MacroSiate q
Ve .
. ~.
~
~

CowStats

v

i <<Abstract Ciasg>>

i’«Abstract Classss <<hbstract Classs> COMAutomationControlier
i DsVecintegrator DsVecExternaillpdater
| “Cv+ intarfacs to ACSL -
N . | MaollyCOMinterface. exe
iSa isd : S—
R — {Uniquely named executable i
5<<Ab5tract Class>> HOLL) - fmliyX.prx i

DsVecUpdater

Figure 3. Class diagram illustrating the structure whereby alternative component models can update the state of

a DynamicComponent (Cow). PGNSimpleCowLacUpdater is a sub-model implemented in the native Smailtalk

environment; MollyCow is a complex external model running in an ACSL environment, Only one of these
"""""""""" (along with their associated components) will be instantiated (for each Cow nstancey ira particularsimutation

model which makes use of only two of these, and generating the SimSpec files referred to in Section
hence the totalAvailableFeedEnergy method in 3.1. Similarly, new farm component specifications
PastureGrass (for example) must be implemented can be generated via a user interface which allows
differently in the PastureGrass subclasses convenient form-entry of their MacroState variables
implementing the two different growth medels. A and then saves them to file. Instantiation of an overall
related issue (not pursued here) is the need to be able farm structure from such saved state, with the
to ‘normalise’ a DsVec to a specific updater model. component sub-model updater classes specified
through the user interface at build-time, is
straightforward,
34 State Storage and Component
Instantiation 4. DISCUSSION AND CONCLUSION
From the discussion of state in Section 3.2 it is clear We have presented an outline of a software
that saving (in permanent storage} of just the framework which allows considerable flexibility in
MacroState of all the Instances of implementing a state-based representation of the
DynamicComponent in a specific farm simulation components of a farm system, and in which different
saves enough information to enable the exact same component models, including *external’ third-party
simulation and pverall state to be re-created. Since sub-models, can be incorporated in a consistent
the MacroState objects are little more than data manner. EThe central 1ssues of state representation
structures, this usefully avoids the need for a and update have been discussed in some detail, but
~ specialised object database. State saves can be other important considerations remain to be treated
initiated from the user interface at any stage the elsewhere. These include representation of spatial
simulation is halted or paused, automatically inhomogeneity within components {potentially

- 787 -

s Gl o et -~ i atian §

Syt
&

el o TEE ton < b |

Figure 4. Simulation results showing daily pasture
growth & demand, and feed intake & milk production
Gver a season.

important in some pasture growth and grazing
scenarios) and improving the ability to represent

-.strongly-coupled.components.such.as.paddocks......

under continuous grazing. The issue of state
normalisation for different update schemes aiso
requires consideration.

In the stage of development described here, the FSSF
is providing qualitatively realistic simulations of
pastorat rotational grazing dairy farming systems as
widely employed in New Zealand. Figure 4 shows
representative resulfs illustrating how a particular
policy for management of the calving distribution
and grazing allowance has attempted to match feed
demand to pasture production, and the effects of feed
shortage on intake and milk production in the early
season. A detailed validation exercise comparing
the performance of ten experimental farmlets having
widely varied management regimes with model
predictions is currently in progress.

The FSSF software (source code and all
documentation} is publicly available under the terms
of the Free Software Foundation’s General Public
License (the ‘GNU Copyleft Agreement’). 1t is

5. ACKNOWLEDGEMENTS
This work has been supported by the New Zealand
Foundation for Research, Science and Technology
under contracts DRC604 and DRC803.

REFERENCES

Baldwin, R L., Modeling Ruminanr Digestion and
Metabolism, Chapman and Hall, 578pp..
London, 1993,

Booch, G., Cbject-Oriented Analysis and Design,
2™ Edition, Benjamin/Cummings, 389pp..
Redwood City, CA, 1994,

Fowler, M. and Scott, K. UML Distilled - Applying
the Standard Object Modelling Language.
Addison-Wesley. 179pp, Reading, MA, 1997,

Lewis, 5., The Artand Science of Smalitalk, Prentice-
Hall, 212pp., London, 1985,

Meyer, B., Ofject-Oriented Software Construction.
Prentice-Hall, 1250pp., Englewood Cliffs, NI,
1997,

Neil, P.G., Distributed Simulation Using DCOM.
Distributed Computing, 15-18, May 1999

Neil, P.G., Sherlock., R.A. and Bright, K.P.
Integration of Legacy Subsystem Components
into an Object-Oriented Stmulation Model of a
Complete Pastoral Dairy Farm, Environmental
Modeliing and Software, in press. 1999,

hoped that this will encourage wider participationin

* both the development of the framework itself and a
wider range of component sub-models.

— 788 —

ObjectShare Tnc, 16811 Hale Ave, Irvine, CA92606,
hitp:/fwww.objectshare.com/. 1998,

Padulo, L. and Arbib, M.A., System Theory, W.B.
Saunders; 779pp;Philadelphia, PA; 1974

Press. W.H., Teukolsky, S.A., Vettering, W.T. and
Flannery, B.P. Numerical Recipes in C — the
Art of Scientific Computing, 2™ Edition,
Cambridge University Press, 994pp, Cambridge,
UK, 1992.

Rational Software Corporation, 188380 Homestead
Road, Cupertino, CA 95014, htip://
www.rational.com/, [998.

Rogerson, D. Inside COM ~ Microsoft's Component
Object Model, Microsoft Press, 376pp,
Redwood, WA, 1997,

Sheriock, R.A., Bright, K.P, and Neil, PG. An
Object-Oriented Simulation Moedel of a
Complete Pastoral Dairy Farm, in McDonald,
AD., Smith, ADM. and McAleer, M. (Eds)
MODSIMS7; Proceedings of the International

Conference oii Modellivg and Similarion,

Modelling and Simulation Society of Australia,
Hobart, Dec 1997.

